CH-110, Fall 2024
Prof. Steinauer

Exercises 3

Exercise 3.1

A particle is confined in a linear box of length L surrounded by walls of infinite potential.
The ground state of this system is described by the following wave function:

Y, (x) = \/% X sin (nL_x)

a) What is the probability of finding the particle at a given position x?

b) At which position is the maximum probability density?

c¢) What is the total probability of finding the particle in the box?

d) If L =10 nm, what is the probability that the particle is between 4:95 and 5:05 nm?

Note: Exercise 3.1 will be solved on the board during the exercise session this Friday,
September 27, 2024.

a) As we saw, the probability density of finding the particle at a given position X is given
by the square of the wavefunction :

Uy (2)? = (\/%sin (7‘(‘%)) = %sin2 (7‘(‘%)

And the probability itself is calculated by integrating the probability density between two
points. Therefore, if we calculate the probability of finding the particle at a single specific
position x, the bornes of the integral are the same :

/: U, (z)%dx

and consequently the integral yields 0. The probability of finding the particle at a particular
position x iequals zero.

b) The position with the highest probability corresponds to the maximum of the
probability density functions ¥1(x)?. A look at the graphical representation of the
wavefunction shows a peak at the middle of the box (¥ = %), otherwise it can be calculated.
When W2, is at its maximum, its first derivative must be equal to zero :
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Since sin (1) = 0, then 5 =0+k7 with k a positive integer. Moreover since * € 0,L],z = 3



x = 0 and x = L also yield first derivative euqal to zero, however they correspond to mimima
and not maxima. This can be easily verified by calculated the second derivative of ¥1(7) :
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Therefore when x = 0 ou x = L the second derivative is positive whereas it’s negative for x =
L/2. A second derivative yielding negative values matches a maximum.

c)  The particule is confined wihtin the box so the totale probability of finding the
particule inside the box must be 1, this can be verified by integrating ¥1 from 0 to L :
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d)  Following the same procedure, with L = 10, we find:
P(4.95 <2 <5.05) = ff 502 () da = .
= 75(5.05 — 4.95) — 5= {sm (275%%) — sin (27r4 %)} = 0.02

The particle has therefore a probability of approx. 2% of being found between 4.95 and 5.05
nm.

Exercise 3.2

The total energy of the particle in the box can be calculated as
Etot = Ekin + Epot»

where the kinetic energy is given by

1
Ekin = Emv .

Write down an expression for the total energy of the particle in the box, using the de Broglie
. . h . - 2L
relationship (p = mv = X) and the fact that the wavelength must satisfy A = ~

What is the main implication of this equation?
Following the expression for the total energy and substituting, we get:
Ey = %mv2 + 0,

since Ep, = 0 inside the box.

Finally substituting the momentum, we obtain:



Erot = =
tot
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tot = o P T o T 2m (2L)2 ~ smL?’

Exercise 3.3

True or False?

a)
b)
c)

d)

e)

The ground state energy of a particle in a box (PDB) is zero.

The energy levels of the PDB are equidistant.

Increasing the steady-state energy of the PDB is equivalent to increasing the number
of nodes in the wave function.

All solutions of the time-independent Schrodinger equation for the PDB are allowed
steady-state wave functions.

The transition of the PDB that absorbs the longest wavelength photon is from the n =
1 level to the n = 2 level.

(a) False: the energy of a particle in a one-dimensional box is described by
E __ h2n?
) = 8mL?’

than zero. n = 0 is not a solution for the particle in a box.

The fundamental state corresponds to n = 1 and its energy is greater

(b) False. They become further and further apart as energy increases, as they are
proportional to n?.

(c) True. The wave function W, (x) = \/% X sin (nLLx) has n - 1 nodes.

(d) True. The time-independent Schrodinger equation (H¥ = E¥) describes all eprmis
stationary states characterized by an eigenvalue (E) and an eigenfunction (V).

(e) True. AE « n»? — n;? so the smallest possible energy (corresponding to the longest
possible wavelength) for a transition from n; to n2 corresponds to the first transition
(n; =1 and no= 2).

Exercise 3.4

The concept of quantization of energy is foundational in quantum mechanics. In atomic

systems, electrons can

only occupy specific, quantized energy levels. However,-when-apheten

Given: The energy levels of the hydrogen atom are described by the formula:

13.6 eV
-

n



a) Calculate the energy of the first two energy levels (n=1 and n=2) of the hydrogen

atom.

Solution:
a) Using the provided formula:

For n=1: E;/=13.6 eV
For n=2: E;=—3.4 eV

b) Enecrgy nceded for the transition from n=1 to n=2: AE=F> FE41=10.2 cV

We removed this exercise because the photon’s energy, 12 eV, does not correspond to
any of the possible transition from n = 1 to n > 1 the photon will not be absorbed.

According to the energy quantization principle, only photons/radiation with energy
matching exactly the difference between two energy levels, n; and n; (with E(n;) <

E(nj)) can be absorbed by the system to promote an electron to the n; level.

We also removed this exercise because we did not talk about high-energy photons in
class. If you are interested in learning more, feel free to read onwards. the interaction
between atomic systems and photons can lead to three distinct processes, categorized
by the energy range of the incident photons:

1. Low-Energy Regime (Visible to Early UV): In this range, interactions are
governed by quantum mechanical principles, particularly energy quantization.



This results in discrete spectral lines in absorption and emission spectra, where
transitions between energy levels are either allowed or forbidden based on
quantum rules (as seen in class!)-

Moderate-Energy Regime (UV): In this range, photoionization becomes the
dominant process. When a photon’s energy exceeds the electron’s binding
energy, the photon ejects the electron, producing a free electron. The kinetic
energy of the electron will correspond to the excess energy beyond the
ionization potential, following the photoelectric effect (as seen in class!).
High-Energy Regime (X-rays to Gamma Rays): At photon energies beyond
the electron rest energy (~511 keV), scattering processes like Thomson and
Compton scattering dominate. As photon energies increase further into the MeV
range (gamma rays), more complex interactions occur, including pair
production, photodisintegration, and photofission. These high-energy processes
involve interactions with both atomic nuclei and electrons (not seen in class!).



